Wonkwon Raymond Lee

111 Sylvan Ave, Englewood Cliffs, NJ 07632 646-469-7805 wonkwon.lee@nyu.edu wonkwonlee.github.io

Research Interests

My research interests focus on developing secure, robust, interpretable, and fair AI systems, with a particular emphasis on privacy-preserving techniques, out-of-distribution resilience, and interpretability. In my previous work, I have specialized in differentially private synthetic data generation and evaluating AI systems for privacy, utility, and reproducibility. I am also passionate about addressing uncertainty and alignment challenges, aiming to integrate AI with human values to create safe and trustworthy applications, especially in critical sectors such as healthcare, finance, and criminal justice.

Education

New York University

09/2021 - 05/2023

Computer Science

Master of Science

Advisor: Julia Stoyanovich

Coursework: Computer Vision, Natural Language Processing, Responsible Data Science, Data Science for Healthcare, Big Data, Advanced Database Systems

University of Manchester

09/2015 - 06/2018

Computer Science and Mathematics

Bachelor of Science

Advisor: Eva M. Navarro-Lopez, Martin Lotz

Thesis: Models of Neurons and Neuronal Networks

Coursework: Machine Learning, Convex Optimization, Linear Algebra, Partial Differential Equations,

Complex Analysis, Image Processing, Cryptography, Algebraic Structures

Research Experience

Center for Responsible AI, New York University

09/2022 - 05/2023

Graduate Research Assistant

New York, NY

- Conducted research under Professor Julia Stoyanovich on evaluating **differentially private (DP)** synthetic data generation methods.
- Developed "Epistemic Parity," an evaluation metric based on the likelihood of reproducibility of quantitative claims in social science research.
- Created **SynRD**, an open-source DP synthetic data benchmarking Python package that organizes the Epistemic Parity workflow, existing papers, and datasets.

McDevitt Lab, New York University

10/2021 - 02/2022

Graduate Research Assistant

New York, NY

- Performed diagnostic prediction modeling research for the Colgate Project under Professor John T. McDevitt, utilizing machine learning and statistical methods for data analysis.
- Preprocessed and visualized complex unstructured biomarker data from microfluidic sensors using SQL, Stata, R, Pandas, and Seaborn.
- Conducted a meta-analysis to combine and analyze data from multiple sources by extracting semantics.

Independent Research, University of Manchester

09/2017 - 06/2018

Undergraduate Research Assistant

Manchester, UK

- Implemented a spiking neural network simulator using Python, QtPy5, Brian2, and Neurodynex to investigate neuromorphic computing paradigms inspired by biological neural systems.
- Simulated and analyzed dynamical synchronization patterns influenced by network topology and external stimuli.
- Conducted research under Dr. Eva Lopez, culminating in the thesis "Models of Neurons and Neuronal Networks," which received the Project Excellence Award.

Wireless Intelligence at Network Edge Lab, Korea University

06/2016 - 08/2016

Undergraduate Research Intern

Seoul, South Korea

- Worked on an IoT Drone project under the supervision of Professor Hwangnam Kim as a Summer Undergraduate Research Intern.
- Developed and implemented new functionalities in MATLAB to optimize real-time simulation of networked drone fleets.

Industry Experience

LG CNS America

System Engineer

04/2024 - Present

Englewood Cliffs, NJ

- Designed and implemented network infrastructure to enhance system performance and security, collaborating with cross-functional teams to troubleshoot and resolve complex networking issues.
- Implemented automated network monitoring and reporting systems to ensure optimal uptime and reliability using Python, Netmiko, and PRTG API.
- Created comprehensive network documentation, including diagrams, operational procedures, and troubleshooting guides, to facilitate knowledge sharing and system maintenance.

Stealth Project (EPLIA)

01/2023 - 01/2024

Co-founder / CTO

San Francisco, CA

- Co-founded a healthcare startup aimed at improving accessibility by addressing language barriers in telemedicine.
- Led the design and development of a web application using Next.js, AWS cloud infrastructure, and WebRTC for real-time communication.
- Managed cross-functional collaboration to deliver a scalable, reliable platform tailored to the unique needs of diverse users.

Pricewaterhouse Coopers

06/2022 - 08/2022

Data Scientist Intern

New York, NY

- Implemented and fine-tuned a BERT model to classify semantic relationships between entities using **PyTorch**.
- Designed data annotation protocols and ML pipelines from data, training, to deployment; deployed the models to AWS for scalable production use.

Publications

Epistemic Parity: Reproducibility as an Evaluation Metric for Differential Privacy

05/2024

Rosenblatt, L., Herman, B., Holovenko, A., <u>Lee, W</u>., Loftus, J., McKinnie, E., ... & Stoyanovich, J. (2024). Epistemic Parity: Reproducibility as an Evaluation Metric for Differential Privacy. *ACM SIGMOD Record*, *53*(1), 65-74.

Out of distribution performance of state of art vision model

Best Experiment, Analysis & Benchmark Paper Runner-up

01/2023

Rahman, S., & <u>Lee, W</u>. (2023). Out of distribution performance of state of art vision model. *arXiv preprint arXiv:2301.10750*.

Epistemic Parity: Reproducibility as an Evaluation Metric for Differential Privacy

08/2023

Rosenblatt, L., Herman, B., Holovenko, A., <u>Lee, W</u>., Loftus, J., McKinnie, E., ... & Stoyanovich, J. (2023). Epistemic Parity: Reproducibility as an Evaluation Metric for Differential Privacy. *Proceedings of the VLDB Endowment*, *16*(11), 3178-3191.

Awards

SIGMOD Research Highlight Awards ACM SIGMOD 2024

06/2024

08/2023

VLDB 2023

Wasserman Center Career Grant

11/2021

New York University

09/2021

Landslide Prediction Modeling Contest Korea Meteorological Administration

. . .

Computer Science Final-Year Project Award

07/2018

University of Manchester

International Mathematical Excellence Scholarship

09/2015 - 09/2017

University of Manchester

Projects

Time-series Medical Image Classification

01/2023 - 05/2023

Developed a time-series classification model to predict disease progression from multi-image chest X-rays by fine-tuning pre-trained DenseNet121 and Vision Transformer models on the MS-CXR-T dataset.

Out-of-Distribution Robustness Evaluation Of Vision Models

09/2022 - 01/2023

Conducted out-of-distribution robustness comparison of 58 computer vision models, including ViT, convolution, attention-convolution hybrid, sequence-, and network-based, using OOD benchmark datasets to assess performance under distribution shifts.

Privacy-Preserving Synthetic Data Generation

03/2022 - 05/2022

 Generated privacy-preserving synthetic datasets using DataSynthesizer and MST, analyzing statistical accuracy, KL-divergence, and mutual information across varying epsilon values.

Model Explanations with SHAP

03/2022 - 05/2022

• Used SHAP to analyze classifier predictions on the 20 Newsgroups dataset, proposing a feature selection strategy that improved classifier accuracy by 2%.

Collaborative-Filter Based Recommender System

02/2022 - 05/2022

• Implemented a collaborative-filter-based movie recommender system using **PySpark**'s alternating least square method and achieved mean average precision of **0.066**

Fairness-Enhancing Interventions in ML Pipelines

01/2022 - 03/2022

• Implemented fairness-enhancing algorithms (pre-, in-, and post-processing) with AIF360, evaluating fairness-performance trade-offs using Folktables ACSIncome dataset.

Landslide Prediction Modeling

04/2021 - 08/2021

• Preprocessed **GIS** and **time-series** climate data and implemented XGBoost and LightGBM models using **TensorFlow** and won 6th out of 150 teams in a national data science competition. **(top 4%)**

Spiking Neural Network Simulatation

09/2017 - 05/2018

• Developed a Python GUI simulator to analyze spiking neural network dynamics, firing patterns, and synchronization properties using libraries like Brian2 and PyDSTool.

Skills

Programming Languages

Python, Java, C/C++, R, MATLAB, JavaScript, SQL

Frameworks and Libraries

PyTorch, TensorFlow, scikit-learn, Pandas, Numpy, SciPy, Flask, Django, Apache Spark

Tools and Methodologies

 ${\tt Jupyter\ Notebooks,\ Git/GitHub,\ Docker,\ AWS,\ IBM\ Cloud,\ LaTeX}$

Languages

Korean, English, Japanese, Spanish

References

Julia Stoyanovich

Associate Professor, New York University

stoyanovich@nyu.edu

Martin Lotz

Associate Professor, University of Warwick

martin.lotz@warwick.ac.uk

Ian Pratt-Hartmann

Senior Lecturer, University of Manchester

ipratt@cs.man.ac.uk